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Full characterization of high-frequency oscillation networks requires seven 

days of intracranial EEG recordings
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High-frequency oscillations (HFOs) in EEG with frequency band above 80 Hz (Figure 1A) is a promising biomarker 

for identifying seizure focus in drug-resistant epilepsy [1]. Numerous studies have shown that channels with higher 

HFO occurrence rates often align with the clinically identified seizure onset zone (SOZ). However, most previous 

studies limited their HFO analysis to short recordings (<30 minutes), which has led to a poor understanding of their 

spatial and temporal dynamics. Like seizures, the spatial distribution of HFO rates can fluctuate over time (Figure 

1B), raising an important but unresolved question: how much data is enough to fully characterize HFO networks? 

 
Figure 1. (A) Example of high-frequency oscillations (HFOs). (B). Temporal changes in HFO spatial distribution. 

 

This study presents a novel approach to determining the minimum recording duration required to fully characterize 

HFO networks. We analyzed long-term, continuous intracranial EEG (iEEG) recordings from 55 drug-resistant 

epilepsy patients undergoing presurgical evaluation (average duration: 8.32 days per patient). HFOs (80-500 Hz) 

were automatically detected across the entire recordings using a validated algorithm. 

 

Our findings show that at least 7 days of recordings are required to fully characterize HFO networks in 98% of 

patients. HFO rates were consistently higher in SOZ channels across all epilepsy types but were more pronounced in 

temporal lobe epilepsy than in extratemporal lobe epilepsy. Patients with frequent seizures exhibited higher HFO 

rates and more stable HFO-SOZ correlations. 

 

Our findings suggest that although shorter recordings capture a portion of the HFO network, a minimum of 7 days of 

data is necessary to account for temporal variability in HFO spatial distributions reliably. Tailoring evaluation 

strategies based on epilepsy type and seizure frequency may further improve HFO-guided presurgical assessments. 
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Rhythmo: A Python toolbox for mapping multiday physiological rhythms and 

brain dynamics
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Circadian rhythms encompass 24-hour cycles that govern physiological processes within the body, including sleep-

wake patterns and hormone secretion (1). Recent research has increasingly focused on infradian, or multiday 

rhythms, over longer timescales (e.g., weekly, monthly and seasonal), particularly in the context of epilepsy (2). In 

addition, multiday rhythms of resting heart rate (measured from wearable devices) were discovered in both people 

with epilepsy and in healthy individuals, which appeared to be comodulated with cortical excitability (3, 4). 

Deepening our understanding of multiday rhythms in the general population is crucial, as it can provide insights into 

the links between our physiology, behavior, and brain dynamics. The onset of wearable devices has allowed for 

continuous and easy access to rich, long-term datasets and personalized health insights.  

 

Rhythmo is a publicly accessible Python toolbox that extracts individuals’ physiological multiday cycles from any 

long-term datasets (e.g., wearable devices, EEG/ECG and other ExG datasets) and allows for study of longer-term 

brain dynamics at different phases of these cycles, which have not previously been discerned. Rhythmo provides 

visualizations (and .csv files) of the dominant physiological cycle and a forecast of the expected future cyclical trend 

in the data with corresponding sampling times for researchers to schedule participants for brain imaging, brain 

stimulation and/or behavioral tasks to map how the brain changes along various phases of their cycle. An example 

application of Rhythmo utilizing heart rate data is displayed in Figure 1. 

 

 

Rhythmo is available on GitHub for the public to upload their data and to learn more about their intrinsic rhythms: 

https://github.com/riplresearch/rhythmo 

References 

1. Foster RG. Sleep, Circadian Rhythms and Health. Interface Focus. 2020 Apr 17;10(3):20190098. 

2. Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, Cook MJ, et al. Cycles in epilepsy. Nature Reviews 

Neurology. 2021 Mar 15;17(5):267–84. 

3. Gregg NM, Tal Pal Attia, Nasseri M, Joseph B, Karoly PJ, Cui J, et al. Seizure occurrence is linked to multiday 

cycles in diverse physiological signals. Epilepsia. 2023 Apr 20;64(6):1627–39. 

4. Karoly PJ, Stirling RE, Freestone DR, Nurse ES, Maturana MI, Halliday AJ, et al. Multiday cycles of heart rate 

are associated with seizure likelihood: An observational cohort study. EBioMedicine. 2021 Oct 1;72:103619. 

https://github.com/riplresearch/rhythmo


Figure 1. HbO (solid red lines) and HbR (solid blue 

lines) waveforms, averaged across subjects. The left 

and right columns are results from infants with left 

and right ear stimulation, respectively and rows are 

results for the three different speech contrasts. The 

dashed red lines are model fits to the HbO data. LPF, 

RPF signify left and right prefrontal Regions of 

Interest (ROIs) respectively, and LT, RT signify left 

and right temporal ROIs respectively. 

Measuring speech discrimination ability in sleeping infants using fNIRS  
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This study used functional near-infrared spectroscopy (fNIRS) to measure the speech discrimination ability of 

sleeping infants. Speech discrimination refers to the ability to differentiate between different speech sounds. We 

examined the morphology of the fNIRS response to 

three different speech contrasts, namely “Tea/Ba”, 

“Bee/Ba” and “Ga/Ba”. Sixteen infants aged between 

3 and 13 months old were included in this study and 

their fNIRS data were recorded during natural sleep. 

The stimuli were presented using a non-silence 

baseline paradigm, where repeated standard stimuli 

were presented between the novel stimuli blocks 

without any silence periods. The morphology of 

fNIRS responses varied between speech contrasts. The 

data were fitted with a model in which the responses 

were the sum of two independent and concurrent 

response mechanisms that were derived from 

previously published fNIRS detection responses [1]. 

These independent components were a HbO-positive 

early-latency response and a HbO-negative late 

latency response, hypothesised to be related to 

auditory canonical response and brain arousal 

response, respectively. The goodness of fit of the 

model with the data was high with median goodness of 

fit of 81%. The data showed that responses of both 

response components had longer peak latencies when 

the left ear was the test ear (p<0.05) compared to the right 

ear. The negative component, due to brain arousal, was 

smallest for the most subtle contrast, “Ga/Ba” (p = 0.003). 

Further research is needed in larger groups of infants with 

both normal and impaired hearing to confirm these results 

and to investigate how these findings might be applied in 

individual infants to provide clinically-relevant 

information.  
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This presentation introduces a novel neural network architecture that aims to provide a biologically plausible model for 

information transmission and associative learning in the animal brain. The Propagating Wavefront Identity (PWI) network 

model involves a Spiking Neural Network comprising one or more 2-dimensional layers of Leaky Integrate-and-Fire 

neurons with nearest-neighbour synaptic connections. The network architecture results in the propagation of spreading 

wavefronts of neural activation across the surface of each neural layer (see Figure 1A). The wavefronts originating from 

different stimulus locations on the neural layer exhibit unique spatiotemporal properties, including radius and orientation, 

as they propagate. It is posited that the unique spatiotemporal properties of propagating wavefronts can be recognised by 

response neurons that are distant from the stimulus origin, without any direct or near-direct connections existing between 

the stimulus and response (see Figure 1B). The response neurons act as feature detectors that respond to a particular 

wavefront’s spatiotemporal properties (its “identity”) and thus the response neuron can be said to be responding to the 

distant stimulus activation. 
 

 
Figure 1. A) Propagation of an activation wavefront across a 2-dimensional layer of neurons. Each neuron that fires tends to activate its 

nearest neighbours, which in turn activate their nearest neighbours, and so on. A brief refractory period prevents reactivation after 

spiking to ensure that the wavefront only travels in one direction. B) Activation of a stimulus neuron at position S on the neural layer 

propagates an activation wavefront which can be recognised by its unique radius and orientation at point R. 

Response neurons have a set of afferent connections that are activated by neurons in a local region of the 2-dimensional 

neural layer (the neuron’s “receptive field”) and can either possess a pattern of connections that predispose them to respond 

to particular wavefront identities, or they can modify their connection strengths to learn to respond to particular identities. 

Learning to identify and respond to wavefront identities only involves synaptic modification of the afferent connections of 

the response neuron (utilising biologically inspired methods such as Spike-Timing-Dependent Plasticity [STDP]), and so 

avoid the need for algorithms such as backpropagation of error. Training of such networks can be unsupervised or may 

involve the application of reinforcement learning techniques in conjunction with STDP to shape the network’s responses. 

Simple versions of the network allow for learning of simple associations between single stimulus and response pairs; 

however, it is proposed that more complex versions of the network, which involve multiple neural layers and the 

propagation of multiple simultaneous activation wavefronts, may enable the learning of far more complex associations. 

Preliminary results from in silico experiments involving simple forms of the PWI network architecture will be provided in 

the presentation. 
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Vision loss due to the degeneration of light-sensitive cells in the retina significantly reduces the quality of life for 

patients with retinal degenerative diseases such as retinitis pigmentosa (1/4000 people affected) and age-related 

macular degeneration (8% population affected). Current research efforts aim to restore vision in these patients using 

retinal prostheses, which bypass the damaged light-sensitive layer and directly transmit visual information to the intact 

retinal ganglion cells. Approaches include electrical stimulation of retinal ganglion cells or optical stimulation of 

genetically modified ganglion cells. Although these methods show promise, they are invasive and lack the ability to 

build upon the residual vision of the patient, respectively. 

 

Our study explores an alternative approach involving mechanical stimulation of retinal ganglion cells using high-

frequency ultrasound waves. Retinal ganglion cells are not inherently responsive to mechanical stimuli and must be 

genetically modified to express mechanosensitive ion channels (Figure 1). Previous studies have shown that the 

expression of mechanosensitive ion channels in retinal ganglion cells can render these cells sensitive to ultrasound 

stimuli with a frequency-dependent spatial resolution.[1] 

 

In this study, we used focused ultrasound waves in an ex vivo animal model (RCS-P+) to assess the effects on 

genetically modified mechanosensitive retinal ganglion cells. Our results demonstrate that high frequency ultrasound 

stimulation can effectively modulate the frequency and amplitude of cell activity. This study provides proof of concept 

for the use of high frequency ultrasound stimulation in novel retinal prosthetics modulating retinal ganglion cell 

activity and improving the quality of life in visually impaired patients suffering from retinal degenerative diseases. 

 

 

         Figure 1. Transduction of the ion channel DNA to the retinal ganglion cells using AAV vectors (left) is followed 

by fluorescence calcium imaging of the dissected RCS-P+ retina. The fluorescence originating from the GCaMP6s 

calcium indicator is shown in green while the expression of the mechanosensitive ion channel, G22 MscL, is shown 

in red. The fluorescence intensity over time for each cell is deconvoluted and displayed in a rasterplot (right). A shift 

in action potential frequency and amplitude is observed during the stimulation window. 
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The neuromimetic chip is a design concept for robotic machine intelligence in the form of the nervous system of 

robots that learn like natural fauna learns. The nervous system technology is best thought of as inorganic reverse-

engineered excitable cell tissue. This physics-replication approach involves no abstract models of brain tissue 

physics or function. Instead of the physics of a general-purpose computer or the physics of abstract models of the 

brain (analogue or digital), a neuromimetic chip has an inorganic version of natural adaptive brain signaling physics. 

That is, it is literally based on the identical causality found in natural brain tissue. Fully developed at macroscopic 

scales it can be expected to produce an EEG/MEG-like electromagnetic signature. The neuromimetic chip fits as a 

member of the class of “in-materio” unconventional computing, where the “in-materio” part is nervous signaling 

rendered inorganically. In the context of the central nervous system, the chip is intrinsically an “edge-of-chaos” 

processor based on the electromagnetic field phenomena created by membranes penetrated by ion channels. The 

neuromimetic approach is currently completely missing from the science. The conceptual basis of the chip is 

demonstrated to be a correction (a normalization) to a science distorted at the birth of AI in 1956. To illustrate the 

current state of the development of the chip, we reveal the prototyping that has produced a macroscopic (roughly 

20,000x) version of a small patch of membrane penetrated by a single “ion channel”. The intent is to explore, at 

macroscopic scale, the causal origins of the cusp leading to chaotic stability. This is designed to discover the 

minimum number of devices and the topology needed to express the rudimentary symmetry breaking needed for 

autonomous learning. While it is early days, and the next stages are unfunded, and the deep-tech fabrications 

challenges are extreme, the approach is on untrodden ground and shows great promise in dealing with the well-

known limitations of current machine intelligence approaches. 
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Nested spatiotemporal theta–gamma waves organize hierarchical visual processing
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Neural dynamics bridge anatomy and function over diverse scales [1], from microscopic spiking to mesoscale LFPs [2] and macroscopic
traveling waves [3, 4, 5]. We report a new nested dynamical pattern in the mouse visual cortex, comprising: i) large-scale θ waves that
propagate across cortical layers and regions; ii) short, localized γ packets that reflect focused processing; and iii) cross-scale coupling
between θ waves, γ packets, and spikes (illustrated in Fig. 1A). This flexible dynamical motif aligns with feed-forward/feed-back anatomical
features of the visual hierarchy and cortical laminae, while also carrying significant top-down/bottom-up functional information that predicts
change-detection performance. Our findings suggest that such distributed cross-scale patterns form a general ‘spatiotemporal θ–γ code’
for efficiently modulating and multiplexing neural information.

We used wave-based methods to analyze the ‘Allen Neuropixels–Visual Behavior’ dataset, illustrated in Fig. 1B, which comprises
multi-region laminar recordings from the mouse visual cortex. After systematically mapping local field potential spectra to identify dominant
timescales, we characterized θ as a traveling wave using the instantaneous phase (Fig. 1D) and quantified translaminar propagation with
the negative spatial phase gradient (see Fig. 1E). We then used the instantaneous amplitude to detect non-stationary, spatially localized
γ packets across layers (Fig. 1F). Finally, by extended classical phase–amplitude coupling measures, we detected spatiotemporal θ–γ
interactions that coordinate large-scale traveling θ waves with localized γ packets (illustrated in Fig. 1G) and neuronal spiking.

All regions exhibited clear θ-band (3–10Hz) and γ-band (30–100Hz) peaks. We also discovered a robust spectral gradient along the
visual cortical hierarchy [6], with θ strength increasing toward deep layers (median Kendall’s τ = 0.37, p < 10−7) and higher regions
(0.25 < τ < 0.60 across layers, all p < 0.01). θ displayed striking bidirectional, nonstationary propagation during visual tasks, switching
from a deep-to-superficial feed-back mode after onset to a superficial-to-deep feed-forward mode after offset. θ also propagated from
higher to lower areas near stimulus onset, but in the reverse direction following offset. Furthermore, translaminar θ propagation (prior to
reaction) predicted ‘hit/miss’ change-detection performance, with a balanced accuracy of 0.65± 0.11 (median ± IQR across sessions, 5
folds, 20 repeats, p < 10−13). Together, these results indicate that θ plays a dual functional role in visual cognition.

γ, on the other hand, formed spatiotemporal wave packets, which became spatially localized after stimulus onset. γ packets were also
locked to θ waves, particularly in layer 1 of lower-order areas and layer 6 of higher-order regions. Moreover, γ packets in superficial layers
tended to prefer θ troughs, whereas deep layers preferred the falling edge. This θ–γ locking was mirrored in the relationship between
LFP and neuronal spiking, where spikes tracked fluctuations in γ power and exhibited similar layer-specific preferences of θ phase.

Based on our findings, we introduce a spatiotemporal θ–γ code that provides a general mechanism for multiplexing and integrating
fine-grained top-down and bottom-up information across cortical layers and brain regions. Our wave-based framework ties local cross-scale
coupling [7] and inter-areal phase synchrony [8] into a coherent, nested pattern of neuronal spiking, γ packets, and θ traveling waves,
highlighting the crucial role of large-scale dynamics in shaping the fine-grained processes needed to interpret complex natural stimuli.
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Figure 1: A schematic of the spatiotemporal θ–γ code and our
methods for detecting nested spatiotemporal patterns.
(A) A spatiotemporal θ–γ code describes how slow traveling
waves (solid surface) and high-frequency packets (circled) can
modulate and multiplex distributed neural information. Packet I
represents strong activation in deep layers, coinciding with a
traveling θ wave that meets II at a peak, enhance superficial γ.
Conversely, packet III represents weak activity in deep layers
coinciding with a stationary θ wave, meaning packet IV occurs
at a θ trough and is suppressed.
(B) We studied LFP and spike data from the mouse visual
cortex during image viewing.
(C) Representative single-trial LFPs in VISl, shown across
time and cortical layers (blue to red bars, left).
(D) θ analytic phases reveal translaminar propagating patterns.
(E) The negative spatial phase gradient quantifies θ
propagation; positive (negative) values indicate downward
(upward) propagation.
(F) The analytic amplitude of γ highlights localized packets of
activity (circled blue).
(G) γ packets are nested inside θ traveling waves.
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Deep learning models have shown promise in neural decoding, given their flexibility and adaptability in high-

dimensional data analysis. In this study, we explored deep learning models as neural encoders for classifying colour 

stimuli from the sheep primary visual cortex. The challenges with this visual decoding task included limited number 

of events per experimental session per animal and the fact that sheep are green-red colourblind. To address this, the 

classification labels were designed with ON/OFF stimulus states for green, red and blue stimuli. As a result, the task 

was to decode neural responses into one of these six classes.  

 

To tailor the model complexity to the dataset size, the choice of the neural networks was narrowed down to simple 

yet effective neural networks, including multi-layer perceptron [1], convolutional neural networks (CNN) [2] with 1-

dimensional kernels (1D CNN) and 2-dimensional kernels, long short-term memory networks [3], gated recurrent 

units [4] and auto-encoder [5]. The results showed that 1D CNN outperformed other models, achieving an average 

accuracy of 69.3% across the five sheep. This performance was notable given that 1D CNN was trained on only 480 

samples per sheep. In addition, various signal representations, i.e., raw signal, spectrogram and trimmed 

spectrogram, were analysed as inputs for these models. The result showed that raw signals were the most robust 

inputs, aligning with findings reported in recent literature [6, 7]. This is as expected, as deep learning models are 

able to automatically capture underlying features from raw signal without the need of explicit feature engineering.  

  

 
Figure 1. The visualization of learned weights from the first 

convolutional layer (left) reveals that at least 12 feature maps detect 

noisy channels present in the input signals (right). We then 

compared model accuracy when trained with and without these 

noisy channels. The result showed no significant difference in 

performance. 
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Visual semantic decoding in neuroscience refers to the process of translating visual information into semantic 

concepts or representations through brain activity. This topic of research is imperative to uncover how brain neural 

activity correlates with semantic concepts and has potential to revolutionize the way we communicate, especially in 

the field of brain-computer interfaces (BCIs). In this study, we explore decoder-only large language models (LLMs), 

such as GPT [1], in the context of visual semantic decoding from electrocorticography (ECoG), particularly focusing 

on open-vocabulary decoding. 

 

A subject-specific model was developed to investigate the feasibility of semantic decoding from visual pathways 

using LLMs. Specifically, we employ encoder-decoder architecture, which consists of a neural encoder and a pre-

trained LLM, i.e., GPT-2.0. The neural encoder maps the ECoG data into high-level neural representations, while 

the decoder interprets the neural representations into natural language. In this work, we use three distinct encoders: 

(1) a 1D convolutional neural network (CNN) [3], (2) a customized transformer [4] encoder that jointly attends to 

both spatial and temporal dimensions, and (3) a simplified transformer encoder with causal attention. 

 

The ECoG recordings were collected from a subject in Japan with drug-resistant epilepsy [2]. The neural responses 

were recorded while the subject watched six 10-minute videos and four repeated 2.5-min video. These videos were 

then segmented at 1 s intervals, resulting in a total of 3,750 non-overlapping frames. Five native speakers of 

Japanese manually annotated 3,750 frames.  

 

In the experiment, we trained the models on 3,000 signal-text training pairs, assessing their performance on 750 test 

samples. However, the generated text is fragmented and ungrammatical. Thus, we post-processed the output by 

removing stop words and calculating the overlap of non-stop words (informative terms) between generated and 

reference texts. 1D CNN slightly outperformed the other two transform-based neural encoders. The result of 1D 

CNN demonstrated that 99.2% of test samples contain at least one informative word, while 45.7% contain at least 

five informative words. Additionally, the ROUGE-1score and BERTScore without removing the stop words from 

the generation were 28.2% and 38.3, respectively.  

 

Overall, these results indicate a reasonable but not high lexical overlap and semantic similarity between the model 

output and the reference text. One possible reason for this is the difference in interpretation of the same visual 

information between subject and annotators.  
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Dragonflies experience highly varied head temperatures when foraging in the wild (Figure 1). Biochemical 

processes, including those underlying neuronal processing, are affected by such changes in temperature1. For 

decades, the dragonfly brain has been used as a model system to understand neuronal processing. From this 

understanding, we have developed neuro-inspired models of target-detection and tracking, translating these models 

to hardware platforms. 

Although they have a relatively small brain (< 2 million neurons), dragonflies perform complex behaviours, such 

as pursuing small moving prey and conspecifics. A class of neurons referred to as ‘Small Target Motion Detectors' 

(STMD) are likely to underlie this remarkable hunting ability. STMD responses are tuned to both the size and 

velocity of dark targets presented to the dragonfly2. However, these neuronal responses have typically been studied 

in controlled environments (temperature of ~25 degrees). Here we investigated how a realistic range of head 

temperatures affects the physiological properties of these neurons. 

Temperatures dramatically altered neuronal responses inducing a large 8.7-fold increase in the contrast sensitivity 

of STMD neurons (Figure 2A). Intriguingly, size-tuning remained the same with suppression of responses to larger 

targets unaltered (Figure 2B). Not only was the optimum of velocity tuning increased, but the fastest velocities 

encoded were extended by an order of magnitude (data not shown).  

Our findings emphasize the importance of controlling the temperature in laboratory environments. The results raise 

new questions about how information is represented within the brain of these flying insects, given the relationship 

between target parameters (size, velocity) with neuronal activity varies so dramatically depending on current 

environmental conditions. 
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Wrist-worn tactile displays are proposed to be effective for enhancing mobility in individuals with visual 

impairments, leveraging the high sensitivity of the wrist to vibrotactile stimulation[1]. These devices offer 

hands-free convenience, beneficial for visually impaired pedestrians. However, current systems face limitations in 

spatial resolution and the complexity of tactile stimuli, restricting their ability to convey rich directional information. 

This study investigated the effects of motor configurations (4-motor vs. 8-motor) and feedback designs 

(single-motor vibration, dual-simultaneous vibration, and dual-sequential vibration) on directional perception, 

aiming to overcome these challenges. 

## Methodology 

A wristband prototype with eight eccentric rotating mass motors was developed, enabling 4-motor and 8-motor 

configurations. Motors were placed at specific angles on the wrist: 0°, 90°, 180°, and 270° for the 4-motor setup, 

with additional positions at 45°, 135°, 225°, and 315° for the 8-motor setup. Feedback modes included single 

vibration, where one motor vibrates; dual simultaneous, where two motors vibrate concurrently; and dual sequential, 

where two motors vibrate in sequence. Vibration intensity (Pulse Width Modulation) was modulated to represent 

finer angular distinctions. Participants wore the wristband on their left wrist and recorded perceived vibration 

directions by clicking on a circular protractor displayed on a screen. 

## Results 

In the 4-motor configuration, participants achieved higher motor recognition accuracy (87.5%) compared to the 

8-motor setup (61%). Among feedback modes, single vibration mode had the highest accuracy (93.4%) and the 

fastest response times (1.8 seconds), while dual sequential mode showed the best angular precision with the lowest 

error (11.6°). The 8-motor configuration demonstrated slightly better angular accuracy overall (23.2° vs. 29.7° for 

4-motor) but showed minimal differences across feedback modes in both recognition accuracy and error. Response 

times in the 8-motor setup were similar but slightly faster overall. 

These findings suggest that the 4-motor configuration provides an optimal balance of simplicity and performance. 

Single vibration mode offers intuitive and fast feedback, while dual sequential mode improves angular precision. 

Future work will refine vibration patterns for the 4-motor configuration and extend evaluations to three-dimensional 

tasks for enhanced directional guidance. 
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Animals can perform very complex spatial navigation tasks, but how the brain implements a navigational system to do this is still 

largely unclear. Recent experimental work discovered egocentric spatial cells that code for the space with respect to the observer, such 

as egocentric spatial cells in the postrhinal cortex (PoR) [1] and egocentric boundary cells in the retrosplenial cortex (RSC) [2]. The 

animals use sensory systems, that are egocentric in nature, to explore space, so understanding how egocentric spatial representation of 

the space arises from sensory input during a learning process is vital to uncover how the brain navigates.  

 

Spatial cells found in rat PoR can be characterized by three aspects: center bearing, center distance, and head direction [1]. Head 

direction is an allocentric measurement, center bearing is an egocentric measurement that is the angle between the current head 

direction and the center of the environment, and center bearing is also an egocentric measurement that represents the distance between 

the animal and the center of the environment. Experimental data shows that PoR cells exhibit diverse spatial properties: some are 

selective to a preferred head direction, some have a preferred center bearing, some show tuning to center distance, and some have 

conjunctive encoding of more than one aspect. 

 

In this work, we build a computational learning model based on sparse coding [3] that can learn different types of PoR egocentric 

spatial cells similar to those observed in real animal brains, using visual information via the superior colliculus [4]. As a virtual rat 

runs in a simulated environment, the visual input of the virtual rat is captured and then used as the input to train the model. After 

learning, our model shows different types of egocentric spatial cells that are similar to those found in PoR. This work explains how 

PoR spatial cells can arise from a learning process with visual input processed by SC, suggesting that the principle of sparse coding 

might be one of the underlying principles in the brain’s navigational system. 
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Epilepsy is a common neurological disorder affecting millions globally[1], often viewed as a brain network 
disorder characterized by abnormal synchrony or instability. Network neuroscience approaches to epilepsy 
attempt to characterize how the various components of the underlying network structure are related to various 
seizure states. These approaches have had success, for example in identifying propagating zones, although they 
have often focused on functional network analysis, and on measures only indirectly related to network 
instability. This could be improved by analyzing generative models of the dynamics, and by directly measuring 
how the network structure relates to instability or lack thereof. 
 
In this study, we employed a one-dimensional Epileptor model from The Virtual Brain platform (TVB) to 
simulate brain dynamics before and after seizures[2], and then employed the resulting weighted connectivity 
metrics to model the fluctuations around a stable state. We developed a novel mathematical approach to 
measure instability of the (linearized) dynamics based on the network structure. This includes introducing a new 
measure to quantify each node's “driving” and “driven” impact on overall network instability !!"#  (see Fig. a), 
offering a more direct alternative to characterising instability as compared to traditional graph metrics like node 
controllability and centrality. To further characterize epileptogenic progression from a structural standpoint, our 
approach differentiates and explains instabilities caused by focal versus distributed seizures. 
 
By tuning node excitability and coupling parameters, we demonstrate that instability measures differentiate 
healthy, non-propagating, and propagating seizure states, serving as early warning markers of critical seizure 
transitions. Moreover, our new mathematics identifies key nodes with strong influence in driving the network 
away from the stable-state. And crucially, this influence correlates to as their susceptibility to drive seizures as 
their excitability increases, underlining the potential of this method to identify epileptogenic nodes. Finally, we 
compared the results to null network models with various aspects of the structure homogenized, which validated 
the role of network structure in determining the emergence and diffusion of instability. Our method provides a 
guide for more targeted surgical and neuromodulatory interventions, such as deep brain stimulation and 
responsive neurostimulation.             

 
 
Figure (a) The convergent walks in the network. The impact on stability is represented by the (weighted) 
count of convergent walks that either originate (driving) or terminate (driven) at the specified node. (b) 
Simplified 1D linear analysis of phase versus TVB parameters x$ and w	corresponds. (c) Nodes’ driving 
impact on instability !!"#  provides the ability to quantify node’s susceptibility as Epileptic Zone (EZ). 
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Preclinical and clinical studies have identified the pudendal nerve as a promising target for restoring bladder control. 

Its proximity to accompanying blood vessels in the pudendal canal enables endovascular neurostimulation, a less 

invasive alternative to conventional implanted electrodes. This study explored the feasibility of excitative stimulation 

and kilohertz-frequency block of the compound pudendal nerve in sheep using a stent-mounted electrode array. In 

acute animal experiments, a commercially available hexapolar electrode catheter was introduced into the unilateral 

internal pudendal artery (Figure 1a) for bipolar stimulation, followed by a custom-made stent-mounted electrode array. 

Global EMG activity of the pelvic floor muscles was recorded. Both electrode types enabled pudendal nerve 

stimulation and evoked pelvic floor muscle contractions, with threshold current influenced by electrode-nerve distance 

and orientation (Figure 1b). Increasing axial inter-electrode distance significantly reduced threshold current. 

Endovascular kilohertz-frequency nerve conduction block was feasible with the electrode catheter. These findings 

suggest that endovascular stimulation via a stent-mounted electrode array could be a less invasive alternative to 

conventional implants for urinary incontinence treatment. Additionally, endovascular pudendal nerve block may offer 

a solution for bladder-sphincter dyssynergia in spinal cord injury management. 

 

 

         Figure 1. a) Surgical access of the sheep internal pudendal artery through the trans-gluteal approach. Open 

arrowhead: Sciatic nerve. Unfilled triangle: Internal pudendal artery. Black triangle: The compound pudendal nerve.  

b) Strength-duration curves of endovascular pudendal stimulation derived from each animal. The inserts are close-ups 

of where the electrode arrays were implanted near the ischial arch. The left inserts mark the estimated positions of the 

catheter electrodes, whereas the right inserts mark the stent electrodes. Stent electrodes marked green (PNS3-6) were 

oriented towards the plane of view (facing dorsally), whereas electrodes marked blue (PNS1 and PNS2) were oriented 

away from the plane of view (facing ventrally). 
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Epilepsy affects millions of individuals globally, with seizures often lacking effective control and severely impacting 

quality of life. This study introduces the Coherence-based Seizure Prediction (CoSP) method, which integrates 

coherence analysis with deep learning to improve seizure prediction and forecasting performance, using long-term 

intracranial electroencephalography (iEEG) data from the NeuroVista seizure advisory system [1]. 
 

As illustrated in Figure 1, the CoSP method first divided iEEG recordings into 10s segments and computed their 

pairwise channel coherence to capture functional brain connectivity. This coherence matrix was then input to a four-

layer convolutional neural network (CNN) to estimate the probabilities of these segments being in the preictal state. 

The final stage of the framework processed these probabilities to issue seizure warnings. 

 

 
Figure 1. The CoSP method framework comprises three primary modules: (1) coherence computation, which 

extracts pairwise coherence from 10-second iEEG segments; (2) preictal probability estimation, utilizing a four-

layer convolutional neural network (CNN) to estimate the probability of being a preictal state; and (3) a 

warning system that processes these probabilities to determine and issue seizure warnings. 

 

CoSP was validated on data from 10 patients and demonstrated promising results across preictal intervals ranging 

from 4 to 180 minutes, albeit with inter-patient variability. Key metrics include seizure sensitivity ranging from 0.63 

to 0.92 (median: 0.79), false alarm rates per hour ranging from 0.03 to 0.79 (median: 0.15), and Time in Warning 

(TiW) ranging from 18% to 35% (median: 27%). Statistically, CoSP significantly outperformed chance predictor (𝑝 
= 0.001) and demonstrated superiority over most baseline methods using the NeuroVista dataset (𝑝 < 0.05). These 

findings highlight the potential of CoSP as an effective tool for seizure prediction, offering improved accuracy, 

reduced false alarms, and meaningful clinical benefits for patients with drug-resistant epilepsy. CoSP advances the 

field by leveraging coherence analysis and deep learning to address a critical challenge in epilepsy management. 
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The cerebral cortex takes the form of a sheet of interconnected neurons that interact both through intracortical 'gray-

matter' connections along the sheet, and through a complex network of long-range ‘white-matter’ connections 

(LRCs) that facilitate rapid communication between distant neural populations. LRCs play a well-established 

functional role in supporting information processing across distributed neural systems and underpin the prevalent 

view of the brain as a communication network (or connectome) of functionally specialized regions. However, recent 

results have challenged this network-based view, showing that key properties of resting-state fMRI dynamics can be 

accurately captured by simple geometric models that neglect LRCs1,2. A key open question thus remains: if LRCs 

are crucial for cortical function, why do they appear to play a minimal role in capturing key dynamical properties of 

fMRI? 

Here we address this question through a range of investigations using a novel mathematical model of cortical 

dynamics, in which neural populations interact both through a connectome of specific LRCs and through a sheet of 

geometrically constrained connections. For a large variety of connectome topologies, we demonstrate that, in 

spontaneous settings and on long timescales (as per fMRI measurements), simulated brain dynamics increasingly 

resemble that of a geometric model that excludes the connectome. Our results thus provide a plausible account for 

the role of LRCs in shaping cortical dynamics on different length and timescales, and explain why LRCs (which 

predominantly shape fast information processing of precise input stimuli) have a minimal role in shaping brain 

dynamics on timescales accessible to fMRI. 
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Predictive coding theory suggests that the brain processes sensory information efficiently by integrating 

feedforward and feedback pathways to minimize prediction errors [1]. Sensory inputs detected in Layer 4 are 

compared with predictions in Layer 2/3, with discrepancies (prediction errors) relayed to deeper cortical layers 

(5/6) and higher brain regions to refine future predictions [2]. When inputs match predictions, excitation and 

inhibition remain balanced, but mismatches cause selective neuronal activation, with prediction error neurons 

firing only when inputs deviate significantly.  

Our research extends Denève’s model [3], where each population of neurons functions as a decoder, allowing 

inhibitory neuron estimations to track excitatory neuron estimations closely. This configuration ensures the 

membrane potential accurately reflects prediction errors, resulting in a sparsely balanced network. The novelty of 

our approach lies in demonstrating that sparsity and selectivity in neuronal firing naturally emerge from these 

mechanisms of estimation and balance by setting the synaptic weights as Gabor filters, which reflect the receptive 

field profiles of neurons in the primary visual cortex (V1). We test this model using visual stimuli to investigate 

its biological relevance. Additionally, we explore these dynamics within a hierarchical spiking neural model 

representing Layer 4 and Layer 2/3 of V1, an aspect of predictive coding that has not been thoroughly studied in 

the context of spiking neural models. The model for Layer 2/3 consists of two excitatory populations encoding 

prediction errors. Positive error neurons fire when a feature is detected in the sensory input but absent in the 

feedback (sensory-driven mismatches), while negative error neurons fire when a feature is predicted but missing 

from the sensory input (prediction-driven mismatches). These excitatory populations are balanced by three 

inhibitory populations designed to maintain a dynamic balance of activity. The circuit design is inspired by 

biological connectivity and the Hertäg prediction error circuit [4], though it is simplified with fewer populations 

and connections. Somatostatin (SOM) inhibitory neurons suppress the distal dendrites of pyramidal neurons, 

activating only during mismatches between feedforward (sensory-driven) and feedback (prediction-driven) inputs. 

Parvalbumin (PV) inhibitory neurons regulate excitatory populations through two subtypes: PV1 neurons, driven 

by feedback (prediction) signals, maintain balance by inhibiting positive error neurons, while PV2 neurons, driven 

by feedforward (sensory) signals, maintain balance by inhibiting negative error neurons.  

We implemented the hierarchical spiking neural network using leaky integrate-and-fire neurons in Brian2. Layer 

4 consists of 4096 excitatory and 1024 inhibitory neurons, while layer 2/3 includes 1024 positive error neurons, 

1024 negative error neurons, and three inhibitory populations comprising 64 PV1, 64 PV2, and 64 SOM neurons. 

Synaptic weights are designed using Gabor filters with six orientations and four phases. The inputs are fixed 

gratings, and feedback is tested under matched and unmatched conditions. Synaptic scaling follows Denève’s 

framework [3], where synaptic weights are normalized by their respective norms, ensuring stable, size-

independent network dynamics and preserving the balance between excitation and inhibition as the network 

scales. 

Our analysis using grating stimuli reveals a tightly balanced interaction between excitatory and inhibitory input 

signals, especially during feature matches. The results show that SOM neurons ensure the distal compartments of 

pyramidal neurons activate only when there is a mismatch between feedforward (sensory-driven) and feedback 

(prediction-driven) inputs. PV1 neurons suppress positive error excitatory neurons whose Gabor profiles match 

the feedback input, preventing unnecessary firing. Neurons with profiles present in the feedforward input but 

absent in the feedback remain uninhibited and can fire, signalling sensory-driven mismatches. Neurons with 

matching Gabor profiles in both feedforward and feedback inputs maintain balance and rarely spike, preserving 

circuit stability. PV2 neurons suppress negative error neurons with Gabor profiles matching the feedforward input. 

Neurons with profiles that matching the feedback but differ from the feedforward input are uninhibited, encoding 

negative prediction-driven mismatches. These activity patterns are consistent with experimental findings from 

Jordan et al. [5]. By examining feedback mechanisms, we investigate the broader influence of stimuli on neural 

circuits, offering deeper insights into the visual cortex’s roles in end-stopping effects. This study contributes to a 

better understanding of visual processing and its applications in enhancing artificial vision systems, highlighting 

predictive coding as a promising alternative to backpropagation for neuromorphic integration. 
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Transfer entropy1 and Dynamic Causal Modelling (DCM) 2 are popular methods for inferring brain connectivity from 

neuroimaging time series. Here, we combine their strengths by mathematically deriving Transfer Entropy under the 

spectral DCM3 model for resting-state fMRI. This approach leverages Transfer Entropy’s ability to quantify 

information flow and DCM’s ability to infer neuronal interactions from indirect neuroimaging measurements. 

 

The main idea is illustrated in Fig. 1. First, we use DCM to fit a model to the observed data and infer the requisite 

parameters, including the effective connectivity matrix that describes the directed excitatory or inhibitory effects 

between brain regions. Then, we use these parameters to derive a DCM-based parametric estimator of Transfer 

Entropy, i.e., the amount of information (in bits) transferred between brain regions. The mathematical derivations are 

based on the theory of stochastic processes and spectral factorisation4,5. We derived the Neuronal Transfer Entropy 

analytically in a toy system and are working on numerical approximations to enable applications to real data at scale.  

 

This novel approach renders Neuronal Transfer Entropy robust to measurement noise6 and other confounding factors, 

e.g. the hemodynamic response in fMRI. It also quantifies the uncertainty of the Neuronal Transfer Entropy estimates 

via Bayesian inference. In conclusion, Neuronal Transfer Entropy is a mechanistic, neuro-physiologically grounded 

model of information transfer that links synaptic physiology to information processing—in a formal and empirically 

testable fashion. It allows us to precisely measure when, where, and how much information flows in the brain. 

 

 

 

Figure 1. Neuronal Transfer Entropy quantifies information flow using brain connectivity inferred via biophysical 

models. This solves current issues in estimating the information flow directly from the neuroimaging time series. 
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With growing interest in endovascular stents as neural interfaces, this study evaluates the impact of stent-electrode 

arrays on blood flow and tissue response following implantation in sheep veins. Computational Fluid Dynamics (CFD) 

modeling was used to simulate blood flow in stented vessel segments (n = 8), which were reconstructed and validated 

using venography and micro-CT scans. Doppler ultrasound measurements provided venous flow boundary conditions 

and validated blood flow dynamics. By analyzing vessel lumen size and blood flow changes over one month, the study 

identifies key factors influencing venous flow and vascular remodeling. Findings indicate that venous flow—

particularly Wall Shear Stress (WSS) immediately post-implantation—correlates with tissue response patterns over 

time. This work addresses gaps in cerebral venous stenting and endovascular neural interfaces, providing insights for 

improved risk assessment and design strategies to minimize blood flow disruptions and device-related complications. 

 

 

         Figure 1. Wall Shear Stress (WSS) and tissue growth patterns in sheep after 1 month of stent implantation. 

A: WSS contour maps across different time points (from top to bottom: Day 0 – before implantation, Day 0 – just 

after implantation, Day 7, Day 14, Day 21, and Day 28), with the blood vessel lumen wall divided into low, mid, and 

high WSS regions. Blood flow direction is from left to right. B: Diameter reduction along the stented region of the 

target blood vessel over 1 month, indicating greater tissue growth at the stent inlet. C: Correlation between WSS at 

Day 0 – just after implantation and tissue growth thickness over 4 weeks (R = -0.6544; P < 0.05), demonstrating an 

inverse relationship. D: Mean tissue growth over 1 month categorized by low, mid, and high WSS regions from Day 

0 – just after implantation.   
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Epilepsy is a neurological disorder that causes recurrent seizures, but the underneath mechanisms are still unclear. Traditional 
methods, using data from humans, nonhuman primates, or rodents, have limitations in resolving the activity of single cells. An 
approach that captures the dynamics of individual neurons and their interactions within brain-wide networks could therefore be of 
great utility in understanding epilepsy. Calcium imaging offers such an approach, as they allow for simultaneous in-vivo recording of 
neuronal activity across the brain at cellular resolution [1]. Zebrafish, sharing genetic and physiological similarities with humans, can 
exhibit seizure-like behaviors due to drugs like Pentylenetetrazol (PTZ), which blocks inhibitory GABAergic signaling. Mutations in 
the scn1lab gene, encoding a sodium channel, can also cause spontaneous seizures [2, 3]. We utilised network analyses and 
computational modelling to statistically quantify differences in functional network topology and dynamics between wildtype and 
scn1lab mutant zebrafish larvae under baseline and post-PTZ condition, as observed through calcium imaging. Specifically, we 
examined the functional network of active neuronal cells involved in ictogenesis across microscopic to macroscopic scales. Our study 
reveals significant and consistent changes in brain network connectivity, indicating that scn1lab mutations impact brain structure and 
functions. Additionally, we employed generative network modelling [4] (GNM, Eq. 1) using similarities between ROIs as the wiring 
rewards (Kij) to investigate the impact of scn1lab mutations and PTZ on brain network formation. The wiring rules, implemented via 
an edge-addition algorithm, consider Euclidean distances (Dij) between ROIs as the cost factor [4]. Simulations for both WT and 
scn1lab mutants adhere to the same network growth principles but differ in their scaling parameters, η and γ (Figure A). Kolmogorov-
Smirnov (KS) energy similarity was utilized for evaluating simulation performance [4]. Partial least squares-discriminant analysis 
(PLS-DA) was applied to classify models of each region to best describe a genotype [5] (Figure B). Results from both pre-PTZ and 
overall stages highlight brain regions (Figure C) responsible for key traits of scn1lab-/- animals, particularly implicating the pallium 
and habenula (Figure D), whose baseline properties significantly differ from WT and strongly correlate with the animals' genotypes. 
Such predictive models would facilitate hypothesis-driven tests of brain function through targeted ablations or optogenetic 
manipulations in future studies. 
 

Figure A. Generative network modelling 
(GNM) simulates wiring principles, evaluated 
by KS similarity. B. The model accurately 
classifies and predicts genotypes without 
relying on phenotypes. C. It assesses the 
contribution of each region to correct 
classification at each PTZ stage. D. The 
pallium and habenula are identified as the main 
contributors to the classification. 
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Objective: Eye tracking is a widely used assistive technology for individuals with physical disabilities but is 

ineffective for those lacking voluntary eye control, such as completely locked-in patients. An alternative approach is 

decoding brain signals related to saccade planning, forming an Oculomotor Brain-Computer Interface (BCI) [1]. 

Previous oculomotor BCI studies have relied on invasive microelectrode implants in non-human primates, which 

carry surgical risks, while non-invasive EEG studies in humans have used electrooculogram (EOG) artifacts, which 

reflects eye muscle activity rather than directly capturing neural correlates of saccade planning. This study 

investigates an alternative approach using an oculomotor BCI based on brain signals recorded from a minimally 

invasive endovascular Stentrode™ device [2] implanted in the supplementary motor area of a patient with 

Amyotrophic Lateral Sclerosis (ALS). 

Approach: The patient performed visually-guided and free-viewing saccade tasks in four directions (left, right, up, 

down), while simultaneously recording eye gaze and neural activity. 

Main Results: Evoked responses revealed Saccadic ERPs (Event-Related Potentials), which appear prior to saccade 

onset and peak shortly after saccade execution (Figure 1). Notably, for free-viewing saccades, these ERPs were 

consistent across directions, suggesting a neural signal independent of target location. Classification of saccade 

versus rest trials achieved a mean AUC-ROC of 0.84 within-session and 0.80 cross-session. Furthermore, as shown 

in Figure 2, pre-saccade classification yielded results comparable to decoding post-saccade or combined pre+post-

saccade trials, demonstrating reliable detection of saccadic intention. The prediction of saccade direction reached an 

AUC-ROC of 0.75 for the best binary contrasts (left vs. up and left vs. down). 

Significance: This proof-of-concept study demonstrates the feasibility of an oculomotor BCI in an ALS patient with 

a minimally invasive endovascular device. These findings provide a foundation for further research on oculomotor 

BCIs in human subjects and highlight their potential for assistive applications, either as standalone BCIs or 

integrated into multimodal systems. 

 

Figure 1. Individual saccade trials (N=606) and 

evoked responses for rest and saccade trials from 

independent component IC7, time-locked to 

saccade onset during free-viewing saccades. 

 

Figure 2. Comparison of saccade onset prediction across 

three intervals: pre-saccade [-500, 0] ms, post-saccade [0, 

500] ms, and pre+post-saccade [-250, 250] ms. 
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Electrical stimulation of neurons has been used as a reliable technique to elicit action potentials in implantable 

devices. Through external forms of generating neuronal response, people with photoreceptor damage from 

diseases such as retinitis pigmentosa, can retain some form of vision through electrical stimulation of healthy 

retinal ganglion cells. Recently, novel optical stimulation techniques have been developed as alternatives to 

electrical stimulation. One approach involves applying near infrared wavelengths of light to the neuron, which 

generates a neural impulse in response. Optical stimulation may increase the resultant visual acuity compared to 

electrical stimulation as it does not apply any current and thus has no current spread. As a result of applying light 

stimulation, the retina experiences an increase in temperature. For this reason, modelling the temperature profile 

within the retina is vital in testing the feasibility of optical stimulation techniques. 

To model the temperature profile in a retina environment that experiences optical stimulation, a Monte Carlo 

simulation was implemented in MATLAB. The environment consisted of four layers; a 100μm layer of water, a 

4μm layer of gold nanorods with 10% surface coverage, 350μm of retinal tissue, and a 100μm layer of glass, with 

a total model size of 350x350x450μm. A 950nm wavelength pencil beam was used to simulate near infrared 

stimulation at an angle perpendicular to the x-y plane, at varying powers that matched the experimental values of 

Begeng et al (2023), 6.6kW/cm2 and 8.8kW/cm2. Two procedures were run at different stimulation durations, 

100μs and 500μs. A temperature sensor was placed in the model 15μm above the gold nanorod surface, to mimic 

the experimental procedure. Each layer had specified coefficients obtained from literature, which included the 

absorption coefficient (μa), scattering coefficient (μS), scattering anisotropy, volumetric heat capacity, and thermal 

conductivity.  The simulation models the temperature profile through finite element modelling of the defined 

geometry, dividing the model into small voxels and analysing the temperature profile of each time point. It 

determines the temperature through tracking the photon paths of the stimulation beam, monitoring how it 

progresses through the tissues via their varying scattering coefficients and refractive indexes. It then models the 

florescence and absorption of the tissues through probabilistic determination. The amount of photons absorbed, 

and its associated power, is then used in conjunction with the heat equation to determine the temperature. 

The simulation model demonstrated general agreement with the experimental results, showing comparable peak 

temperatures and maintaining a consistent trend with the varying pulse durations. Furthermore, the proposed 

model allows for estimation of the temperature profile on the retinal surface, which is difficult to measure 

experimentally. 

Whilst the model does understate the time taken for the retinal tissue to cool down after the stimulation pulse, 

compared to the experimental values, this can be addressed via increasing the complexity of the model.  Future 

work may also include defining temperature- and wavelength-dependent medium coefficients, the implementation 

of convection cooling processes, and using an active neuronal tissue, such as Hodgkin-Huxley type models. 
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The emergence of visual cell properties in the brain can be explained by computational models such as sparse coding 
[1]. Most models, however, employ rate-based dynamics and learning, and use static image stimuli. Since visual 
sensory experience is dynamic, using spatio-temporal video stimuli more accurately reflects biological vision 
processing. In this study, we build upon our previous biologically realistic spiking network [2], incorporating spatio-
temporal processing [3], to investigate how different spike-timing-dependent plasticity (STDP) rules and video speeds 
influence receptive field (RF) formation. The model processes natural video stimuli through a biologically inspired 
hierarchy: input from natural video is first processed by lateral geniculate nucleus (LGN) neurons with spatio-temporal 
properties before being learned by primary visual cortex (V1) neurons through STDP. 
 

 

Figure 1. (A) Spatio-temporal RFs of four chosen excitatory neurons. Each row represents one RF, each box is a 
snapshot of the spatial RF. The direction-selectivity index (DSI) is annotated. (B) Distribution of DSI for excitatory 
and inhibitory neurons. Each circle is a DSI of a neuron, with jitter in the x-axis corresponding to the density of points. 

 
Among different variants of STDP used in this study, triplet STDP [4] was shown to be more robust to video speeds 
compared to asymmetrical STDP and symmetrical STDP. RFs formed with triplet STDP were well described by Gabor 
filters, with a higher proportion of oriented RFs. In contrast, symmetrical STDP produced a greater proportion of non-
oriented RFs. These findings suggest that the brain may employ an STDP rule similar to the triplet model. Video speed 
also affects the diversity of RF shapes: static images led to more uniform RF shapes, while video increased shape 
diversity, ranging from blob-like to oriented Gabor-like RFs. This may be due to the temporal information in video, 
such as motion, which is absent in static stimuli. Lastly, when incorporating both spatial and temporal properties in 
the input LGN neurons, the output V1 neurons were able to learn diverse spatio-temporal properties, such as direction 
selectivity. The model distributions of excitatory and inhibitory direction-selective index (see Figure 1) resemble the 
distributions found from experimental recordings.  
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Introduction. The receptive field of a visual neuron conveys valuable information about the cell’s signalling 
properties – visual field location, spatiotemporal characteristics, and more. A variety of stimuli have been used to 
compute the receptive field, including spots, bars, gratings, and white noise. We instead aimed to use stimuli, natural 
images, which neurons have evolved and developed to process. Methods. Stimuli were photographs of macaque 
monkeys [1] and were presented to a signal-processing model of the macaque visual system [2, 3]. The model 
included cones, horizontal cells, bipolar cells, ganglion cells, geniculate cells, and both excitatory and inhibitory 
cells in layer 4Cb of primary visual cortex. Each cell was implemented as a first-order differential equation, and all 
equations were solved simultaneously to obtain time-varying responses. Receptive fields were calculated by 
presenting each image for 50 ms, weighting the image by the cell’s peak response, adding all weighted images, and 
normalising the sum by the number of images (about 1600). As a control we also used gratings which varied across 
the full range of orientations, spatial frequency, and spatial phase. Receptive fields were calculated from responses 
to pulsed gratings using the same stimulus/response correlation method as for natural images. Results. The receptive 
field obtained with images approached that for gratings as the number of images increase. For the cell shown in the 
figure, the correlation coefficient between the two receptive field types asymptoted to 0.74 (p < 0.001). This is quite 
representative of the coefficient, 0.69, for all 529 neurons in our sample. Discussion. While neurons in primary 
visual cortex respond well to gratings, the preferred stimulus for downstream cells is typically unknown. Finding 
optimal stimuli for these downstream cells may be assisted by calculating their receptive fields from responses to 
natural images. 
 

 
 
Figure 1. The upstream visual system of a macaque monkey was simulated with a signal-processing model. The 
figure shows the receptive field of an excitatory neuron in the input layer of primary visual cortex. The receptive 
field was calculated from the responses of both pulsed gratings (left) and natural images (right). Blue and red 
indicate areas in which light decreased and increased impulse rate, respectively. 
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Biological spiking neural networks (SNNs) and artificial neural networks (ANNs) are known to benefit from the use 

of sparse coding [1]. In this energy efficient approach, each neuron responds strongly only to a specific feature 

present in a minority of inputs.  

 

To find the SNN model parameters that lead to sparse coding the response sparseness of a single Leaky Integrate-

and-Fire (LIF) neuron with an adaptive spike threshold and without synaptic learning rules was used. Informed by 

these results a recurrently connected network of these neurons equipped with spike-timing dependent plasticity rules 

was used to learn sparse visual features in a set of natural images. 

 

In both models it was observed that a sparse response was not purely an outcome of the correct choice of synaptic 

learning rules. A sparse code additionally required a specific set of input encoding and model neuron dynamics 

(Figure 1). Specifically, in the single neuron model it was found that the total spikes per second input to each LIF 

neuron must be sufficiently high, the neurons must have a sufficiently high threshold (i.e., generate a low output 

spike rate) and sufficiently short duration (i.e., fast) membrane time constant. Similar observations were made in the 

recurrent network model.  

 

         Figure 1. A single LIF neuron with a membrane time constant of 10 ms and spike-threshold chosen to achieve 

the given target rate (0.2 Hz, 1 Hz, or 5 Hz). Input is from 100 Poisson neuron inputs with rates varied 

logarithmically between 0.1 Hz and 100 Hz. (A) and (B) show the raw and scaled output spike rates as a function of 

input rates. The labels give the sparseness (ς) value for the 3 chosen target output spike rates. (C) Shows the 

sparseness (ς) values for a range of different parameter choices. The labels above each bar give the target spike rate. 

Labels below the bars are other parameter choices. 
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The Spiking Neural Network (SNN) has drawn increasing attention for its energy-efficient, event-driven processing, 

and biological plausibility [1]. To train SNNs via backpropagation, surrogate gradients are used to approximate the 

non-differentiable spike function, but they only maintain nonzero derivatives within a narrow range of membrane 

potentials near the firing threshold—referred to as the surrogate gradient support width γ. We identify a major 

challenge, termed the dilemma of γ: a relatively large γ leads to overactivation [2], characterized by excessive 

neuron firing, which in turn increases energy consumption, whereas a small γ causes vanishing gradients and 

weakens temporal dependencies [3]. To address this, we propose a temporal Inhibitory Leaky Integrate-and-Fire 

(ILIF) neuron model, inspired by biological inhibitory mechanisms including hyperpolarization and retrograde 

inhibition [4] (see Figure 1). This model incorporates interconnected inhibitory units for membrane potential and 

current, effectively mitigating overactivation while preserving gradient propagation. 

 

 
 

         Figure 1. (a) Diagram of the inhibition mechanism, illustrating presynaptic inhibition and postsynaptic 

hyperpolarization.; (b) Structure of the vanilla LIF model; (c) Internal operations of the vanilla LIF model; (d) 

Structure of the ILIF model; (e) Internal operations of the ILIF model. 
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Implantable neural interfaces enable recording of high-quality brain signals that can improve our understanding of 

brain function, while endovascular electrodes have a more manageable risk profile. This work aimed to use a 

minimally-invasive endovascular neural interface to record and interpret cortical activity from the visual cortex. We 

explored the use of temporal convolutional networks (TCN) to decode the visual cortical activity, as these models 

are presumed suitable for time-based signals. 

 

A sheep model (n = 2) was used to record and decode visually evoked potentials from the cortex both with both 

endovascular and a subdural electrode grid (electrocorticography array). In awake animals, a series of 2 s visual 

stimuli were presented sequentially, consisting of a full-screen of colour (21” monitor) chosen between blue, green, 

cyan or white, interleaved with a blank screen for 0.4 s. The signals were sampled at 4.8 kHz and processed offline 

with a bandpass at 2–1000 Hz and notch at 50 Hz. Epochs of 2 s around stimulus onset were decoded using a TCN 

classifier with 5-fold cross-validation. A portion of the recordings (10%) was excluded during model training and 

validation and reserved for testing. 

 

The accuracy of the 4-class TCN classifier was above 70% (see Figure 1) when using electrocorticography signals. 

Recordings exclusively from the ENI array resulted in lower decoding accuracy (40%) but were significantly above 

chance. This study is the first report of visually evoked neural activity using a minimally-invasive ENI.  

 

Overall, the results show that implantable macro-electrodes yield sufficient spatial resolution to discern primary 

visual percepts from sheep cortex, using both endo-vascular and intracranial surgical placements. The TCN model 

was successful in classifying the time-domain signals without sub-sampling or  

 

Test Accuracy: 75%

 

         Figure 1. The visual cortex in sheep brain (left) was targeted with endovascular stent electrodes and an 

electrocorticography array and sequential visual stimuli of blue/green colour combinations were presented while 

awake. The TCN model used for decoding achieved test accuracy > 70%. 
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Seizures can be distinguished by transitions of neural activity through pre-ictal, ictal, and post-ictal states, each 

associated with shifts in spectral power and phase coupling. Time-delay embedding allows the reconstruction of 

timeseries data in phase-space to create multi-dimensional attractors, whose geometric complexity can be quantified 

(Correlation Dimension D2) [1], and multi-scale stability can be assessed using scale-dependent Lyapunov 

exponents (SDLEs) [2]. These metrics originate from dynamical systems theory and require validation across 

diverse human datasets and seizure types, which demonstrate significant heterogeneity. Using EEG data from 

induced (photic, hyperventilation) and spontaneous seizures, and iEEG of focal seizures from the HUP database [3], 

we apply these metrics, and relate them to traditional measures including power spectra and phase-amplitude 

coupling (PAC). We find that generalised seizures (EEG) demonstrate a three-dimensional pseudo-cyclic attractor 

(see Figure 1), with reduced D2 (~2.2) compared to baseline (~2.5) associated with spectral red shift (power 

concentrates in low frequencies). In contrast, iEEG data of focal seizures display richer dynamics, with higher 

dimensional attractors (3-4D) and faster neural activity. Distributions of scale-dependent lyapunov exponents shift 

dramatically at each transition, suggesting a scale-dependence of seizure transition dynamics. Ranking iEEG 

channels by leading significant metric change could assist seizure onset zone localisation. All datasets showed faster 

post-ictal recovery compared to pre-ictal destabilization, often heralding reduced bandpower consistent with cortical 

depression. This work links attractor geometry to spectral dynamics, validating dynamical measures despite the 

variability demonstrated by clinical data. Robust metrics of state transitions can inform seizure prediction 

approaches and surgical epilepsy treatment. 

 

Figure 1. Timeseries data of EEG seizure activity 

(top) induced by photic stimulation initiating at the 

vertical dashed line, and corresponding attractor 

(bottom) obtained through time-delay embedding 

with a delay τ = 0.273s and dimension = 3. Trajectory 

vector colour corresponds to timeseries data position. 

An ellipsoid marked with black rings encloses 99% of 

the pre-ictal data to illustrate a ‘separatrix’ or 

boundary.  Axes units are normalized voltage. 
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Spiking Neural Networks (SNNs) offer a low-power alternative to traditional deep neural networks, leveraging their 

sparse, event-driven nature for efficient processing of static and event-based data. While previous spiking auto-

encoders were power-hungry and limited to static data, this presentation introduces a novel architecture for efficient 

and high-quality reconstruction of both static and spatiotemporal data, as shown in Figure 1. We demonstrate that 

our hidden layer can encode each static input with a single spike, minimizing power consumption. Additionally, our 

modified decoder neuron model enables precise control over output spike timing, leading to improved reconstruction 

quality. We validate our spatiotemporal reconstructions on the Spiking Heidelberg Digits (SHD) dataset, exploring 

the trade-off between spike count and reconstruction accuracy. Our findings pave the way for complex SNNs to 

operate more efficiently. 

 

 Figure 1. Spiking autoencoder architecture for static and spatio-temporal input reconstruction. 
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Depression is a prevalent disorder that significantly impairs emotional well-being and daily life causing social 

isolation and economic hardship, and a substantial loss of quality of life [1]. Identifying reliable biomarkers is essential 

for advancing personalized treatment strategies. According to brain criticality theory, the brain operates near a critical 

state, with deviations from this state proposed as potential indicators of neurological and neuropsychiatric diseases, 

such as epilepsy [2]. In this study, we explore the potential of brain criticality as a biomarker for depression using 

electrophysiology recordings. 

 

Multi-channel electrode recordings were performed in the hippocampus of two groups of C57BL/6 mice: 

corticosterone-treated (CORT) and wild-type control (CON). CORT mice show depression-like behaviours and have 

been widely used as an animal model of depression [3]. Recordings were conducted while the animals were under 

anesthesia, both pre- and post- injection of the antidepression drug, sertraline, as shown in Figure 1.a. Branching ratio, 

a main measure of brain criticality, was estimated using a multistep regressive estimator [4]. The coefficient of 

variation of the branching ratio was evaluated to assess the variability of brain network dynamics. 

 

The branching ratio differed significantly between the CORT and CON groups after sertraline was applied (p<0.05), 

as shown in Figure 1.b. The coefficient of variation of the branching ratio was higher in CORT mice, as shown in 

Figure 1.c, although statistical significance was not achieved, likely due to the small sample size. These results suggest 

that the branching ratio is a promising biomarker for depression and antidepressant response. Furthermore, these 

findings provide valuable insights for developing real-time brain activity monitoring devices to optimize depression 

treatment. 

 

 

Figure 1. a. Schematic of experimental design and multi-channel electrode recordings. b. Box plots of branching ratios 

of corticosterone-treated (CORT) and control (CON) groups pre and post injection of sertraline. Stars represent the 

mean values. c. Bar plots showing the mean coefficient of variation of the branching ratios, with error bars representing 

the standard deviation, in the animals pre and post sertraline. NS: no significant difference, *: p-value<0.05. 
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Cortical visual prostheses restore vision by stimulating neurons in the early visual cortex, evoking bright dots in the 

visual field known as phosphenes. Despite the advancement of this technology, simultaneously stimulating multiple 

electrodes may cause complications in visual perception, such as phosphene distortion [1]. Moreover, this could 

overflow the brain with excessive charges. Alternatively, we could dynamically evoke phosphene via current 

steering, where a single phosphene moves smoothly to represent simple visual stimuli, such as letters [2].  

 

We proposed a new stimulation protocol called “raster scanning” to combine the strength of both methods. We 

activated a small number of phosphenes per frame and sequentially activated them to present the outline of complex 

objects. Due to the risk of neurosurgeries, we simulated the resulting vision on an HTC VIVE VR headset with an 

MRI-derived phosphene map [3]. We recruited twenty participants to evaluate the efficiency of raster scanning 

against simultaneous presentation. We estimated both methods under three refresh rates: 4Hz, 8, and 16Hz. We ran 

three psychophysics tasks to assess participants’ visual performance: dynamic shape recognition, sorting, and dining 

table recognition. We hypothesise that raster scanning would perform better at static recognition tasks but not fast-

localisation tasks. 

 

We found that raster scanning improved participants’ accuracy and reduced response time for all three tasks. In 

addition, raster scanning could also reduce head movement for dynamic shape recognition and dining table 

recognition tasks. Our results highlight the potential for using raster scanning in cortical prosthetic vision in the 

future. This method could be a more efficient and safer way to convey visual information. We believe more sessions 

might help us understand how participants adapt to this new stimulation protocol and further optimise this method. 
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Figure 1- A-C) Example of dynamic shape recognition, sorting, dining table recognition. D-F) 

Participants’ accuracy for each task. 
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Cortical visual prostheses aim to restore sight for the legally blind by directly stimulating the brains visual cortex 

with electricity which can cause the perception of spots of light, used to build desired images. A current limitation is 

post-stimulation suppression (PSS), where after stimulation activity of tissue surrounding the electrodes reduces [1].  

Computational modelling of the brain has been used to explore PSS, linking it to both individual cell factors and 

feedforward/feedback inhibitory synapses [1], but did not include connections between stimulated cells. We 

hypothesize that changes to the connection strengths which include inhibitory cells will modify the duration of PSS. 

 

We have created, with the Brain Machine Toolkit [2], a model of layer 2/3 in the primary visual cortex (V1) with 

1066 cells (80% excitatory) using connection to a 1000 sp/s Poisson cell (baseline) for baseline spike rate. A new 

method to model stimulation has been developed to allow simulation of cells close to the electrode. The connection 

strength between cells (excitatory/excitatory (EE), excitatory/inhibitory (EI), inhibitory/excitatory (IE), 

inhibitory/inhibitory (II), baseline/ excitatory (BE), baseline/inhibitory (BI)) has been optimized to match 

stimulation of V1 in a rat, collected by our group [3]. For optimization 10µA of current was used to maximize 

activated cells for calculating PSS, and final accuracy was determined across a range of currents (1.5µA,2.5µA,4µA, 

5µA,7.5µA). To determine connection impact on PSS the magnitude of the optimized strength of was scaled 

(0x,0.001x,0.1x,10x,100x) for all types. 

 

The optimized model was not statistically significantly different from experiment (Spiking rate = model: 5±10sp/s, 

experiment: 5±5sp/s, p=0.89; PSS = model: 45±7ms, experiment: 45±2ms, p=0.87; mean±sd, unpaired t-test). When 

the optimized connection strengths were scaled there was no significant change for any reduction in magnitude or 

increase for IE, II, BE, EI or BI which opposes the hypothesis. However, there was a significant decrease in PSS as 

the magnitude increased for EE (10x = 37±13ms, p=0.017; 100x = 11±10ms, p=0.0001; mean±sd, unpaired t test). 

As there was no change for when the connection was removed (0x) this supports previous results indicating a 

cellular component of PSS.  The reduction of PSS with high excitatory connections may be due to loss of stability in 

the network, indicating PSS may be important in maintaining network stability during sudden peaks of activity. 
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Intrinsic timescales of brain regions exhibit heterogeneity and are crucial for the temporal integration of external 

stimuli1,2. Aging, often associated with cognitive decline, leads to neuronal and synaptic loss, reshaping brain 

structure and dynamics3. However, the impact of these structural changes on temporal coding in the aging brain 

remains unclear. We mapped intrinsic timescales and gray-matter volume (GMV) using MRI in young and elderly 

adults. Elderly subjects showed shorter intrinsic timescales across functional networks and a positive association 

between timescales and GMV. Using an age-dependent spiking neuronal network model4,5, we found younger brains 

near a critical branching regime, while aging pushed dynamics toward a subcritical state. This shift explains reduced 

intrinsic timescales and highlights structural changes driving altered brain dynamics, offering insights into cognitive 

decline interventions. 

 

 

Figure 1. Brain networks in elderly subjects show a greater distance to criticality. A. Autocorrelation with lag 1 

(AC1) for fMRI BOLD timeseries (top) and neuronal network modeling (bottom). B. AC1 peaks at the critical 

branching ratio (σc =1). The branching ratio (σ) quantifies the propagation of activity between neurons: σ < 1 

indicates a subcritical state with reduced activity spread, σ = 1 reflects criticality with balanced propagation, and σ > 

1 represents a supercritical state with excessive activity spread. (C) Intrinsic timescales peak at σ = 1, with aging 

shifting the network toward subcriticality (σ<1, yellow arrow). Inset: Neuronal network phase transition occurs at σc 

= 1. 
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The Cochlear Implant (CI) provides hearing to individuals with hearing loss by directly stimulating auditory nerve 

fibres (ANFs). Spread of excitation from stimulated electrodes can vary significantly between users, directly 

impacting their hearing performance. Psychophysical Forward Masking (PFM) measures the increase in the 

detection threshold of a probe when presented after a masker [1] to estimate the extent of spread of excitation of 

electric fields from electrodes and the potential impact upon the ability to perceive nearby electrodes. While it is 

known that PFM involves processes more central than the auditory nerve [2], the underlying mechanism remains 

unclear. This research aims to develop a model to explain these mechanisms using a user-specific computational 

model and PFM data. Data from previous PFM experiments with CI recipients [1] were used to obtain user-specific 

information, including masker and probe positions, current levels and masking profiles. With a masker stimulation 

of 300 ms duration at 250 pulses/s on a fixed electrode position at 80% of dynamic range, the masking profile shows 

how many additional current levels in a subsequent probe stimulus (20 ms, 250 pulses/s) are required to perceive the 

probe. 

 

  

(a) (b) 

Figure 1 (a) An example of neural activations in different regions of the cochlea during masker (300 ms pulse 

train on electrode 6, 250 pulses/s) and probe (20 ms pulse train on electrode 6) after applying a loudness 

integration window. (b) Simulation plots of one CI user for one masker position and different probe positions. 

 

To study the additional neural activation required to perceive the probe, we used an existing stochastic neural 

model [3] to obtain neural activations of the masker and probe. The neural activity of 100 ANFs in the model at each 

electrode position was integrated over a 40 ms moving window to estimate perceived spatial loudness, as shown in 

Figure 1(a). Spatial loudness is presented by the neural spikes in each electrode region divided by the total number 

of ANFs. The neural spikes and spatial loudness at each probe location during unmasked threshold level stimulation 

were also obtained. Figure 1(b) shows an example simulation of a CI recipient's activated ANFs at different 

electrode positions during the masker (blue curves), perceivable probes (red curves) and unmasked threshold 

stimulation (orange bars) for one masker position and different probe positions. In future research, the criteria of a 

probe being detected will be determined to improve the accuracy of the simulation results. 
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Understanding the temporal dynamics of seizures offers valuable insights into the underlying neurophysiological 

mechanisms associated with epileptic events. The duration of seizures is a fundamental aspect that reflects the severity 

and impact of the epileptic condition on the brain. To explore this, we developed a Neural Mass Model (NMM) for a 

cortical column, comprising interconnected motifs representing layers 2/3, 4, and 5 of the cortex. Each motif includes 

excitatory and inhibitory neuron populations interconnected through forward and recurrent inhibitory and excitatory 

connections [1]. We fitted the connectivity weights in the NMM to the intracranial EEG (iEEG) data from a Tetanus 

Toxin rat model of epilepsy [2, 3]. 

Our investigation aims to understand how model parameters change with the duration of seizures. Seizures in the first 

quantile of the duration distribution for individual rats were classified as short seizures, while those in the last quantile 

were classified as long seizures. A Random Forest classification algorithm was employed to distinguish between the 

two classes. The Random Forest model was trained using connectivity strength values from the NMM, specifically 

the connectivity one minute before seizures and the average connectivity strength during the first five seconds 

following seizure onset. Bayesian optimization was utilized to fine-tune the model's hyperparameters, and feature 

importance scores were calculated to identify the most relevant features for classification. The classifier was retrained 

using the selected features to enhance its performance. Model evaluation was performed using the Area Under the 

Receiver Operating Characteristic Curve (AUC), providing insights into the trade-off between sensitivity and 

specificity. 

The Random Forest classifier demonstrated robust performance in distinguishing between long and short seizures. 

When using connectivity strength values from the NMM model one minute before seizure onset and during the first 

five seconds of the seizure, the classifier achieved a high AUC=0.91, indicating strong sensitivity and specificity. In 

comparison, the performance of the classifier trained solely on connectivity strength values from one minute before 

seizure onset showed a slight decrease in AUC=0.70, suggesting that incorporating features from the seizure onset 

period enhances the model's discriminative power 

These findings highlight the importance of combining pre-seizure and early seizure dynamics for classifying seizure 

duration. The results suggest that the neural network parameters during seizure initiation provide complementary 

information to pre-seizure connectivity, thereby improving classification accuracy. This underscores the value of 

leveraging temporal changes in neural dynamics for understanding and predicting seizure characteristics, which could 

inform personalized therapeutic interventions and seizure forecasting. 
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